If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=60F-16F^2
We move all terms to the left:
(F)-(60F-16F^2)=0
We get rid of parentheses
16F^2-60F+F=0
We add all the numbers together, and all the variables
16F^2-59F=0
a = 16; b = -59; c = 0;
Δ = b2-4ac
Δ = -592-4·16·0
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-59}{2*16}=\frac{0}{32} =0 $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+59}{2*16}=\frac{118}{32} =3+11/16 $
| v/5=-2 | | –48=–7x–13 | | -2=w/14 | | x+(x-1/2)+(x+1/3)=42 | | -15=3(x+2 | | -3/2-2=x+1 | | X+3/9=1-x+3/5 | | X+5/8=2-x+4/3 | | 11=12-5w | | y=7*16.698 | | x-(0.15x)=6 | | y=7*(24943^-0.993) | | 3(-k+6)/8=6 | | x-0.15x=6 | | y=(24943^-0.993) | | –5n+9=–46 | | y=2*(10^(7*(24943)^-0.993) | | y=7*(24943)^-0.993 | | y=(7*24943)^-0.993 | | −4−8y=−9y+6 | | -3t^2+96t+40=0 | | 3+23.5x-4.9x^2=0 | | (100/x)=(8x=6) | | (8x=6)=(100/x) | | (x=6)=(60/x | | (8x=6)=(60/x) | | y=24943^-0.993 | | 10(m-6)=3m+4 | | 4=3/4x-8 | | y=2*10^(24943^-0.933) | | 4–3(5–y)=7 | | 9x-9=24x-96 |